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The effect on an elastic isotropic half-space is studied of a load applied nor-
mal to the boundary and moving at a constant velocity along one of the coor-
dinate axes. Underlying the search for the solutions of the elasticity theory
equations in displacements in a coordinate system coupled to the moving load
is the method of complex solutions [1]. However, the anisotropy of the elastic
properties of the medium which hence occurs is inadequate to a direct utiliza-
tion of this method, hence additional elastic parameters are introduced, The
solutions hence found are then converted to an isotropic medium by a passage
to the limit of the elastic parameters to the isotropic parameters,

Formulas are obtained for the displacements of the elastic half-space during
motion of a normal distributed load bounded by an ellipse, by a concentrated
force, by a system of forces bounded by any closed contour along its boundary,

1, Solutions of a system of second order linear differential
equations of elliptic type, In the absence of mass forces, let us considersome
hypothetical anisotropic medium 'which is described by the following system of equations
in the rectangular coordinates z, y, z:
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Here u; (j = 1, 2,3) are displacement components of the material points of the me-
dium, and k3, S, p are positive parameters characterizing the elastic properties of the
medium and independent of the current coordinates,

Following the method elucidated in [1], and omitting the computations, it is possible
to obtain the solution on
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Here
Am APBn, AP = ADmn, (1.3)
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Sy=1, Sy5= —M¢VM“2—(14$$S)(1+@2S)

M=24+854k?S 4 k252 — p?
The functions ®,,dependent on the argument

Q, =zl + ym 4+ nyz (1.6)

are arbitrary,

2, Finding the solutions for a half-space. Let usselect the following

9 -

E=kl )5+ L (S S (@D
o)
E=p—i) Gt A+ G (s

9, 2
==k G+ (5 — )"’“* +U—8)FE

‘_r_‘.“_= 6“2 Juy y 9wy 3“1 Tuz duy dugy

W e T oy e

T

as the relation between the stresses and strains,
If an axisymmetric normal load acts on the boundary of the half-space z > 0 ,and
there are no tangential stresses, then by proceeding from (2. 1) the following boundary

conditions can be written:
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Differentiating (1. 2) with respect to z, y, z ,and substituting them into (2.2), we ob-
tain the system of equations
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The method for finding the functions dwj / dE is elucidated in [2, 3]. Omitting the
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tedius computations, we write down the final result
dop Ay gy
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Here
Ay = A;PA A DT mnyngngA (2.3)
b= (=Nl +Er—a—(@—1)f] @9
v =1—i§', a=kl4m, f=V1+v(@—1)
Ay =2 [APAP — APAP] Bmnging? (2.5
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Ay = — AP [APRI2 - AL (m? 4 1)] PBmny?
d¥+(€) 1 d H ro, (ryar (2.6)
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Continuing dW¥+ / dE analytically into the domain 2z > Q by the Cauchy formula
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and integrating with respect to Qj,we finally obtain
A
— %
o () = £ ¥ (@) 2.7
Substituting (2, 7) into (1, 2) yields the displacement components
an 3 ;
AA
%= S Re [Z v W(Qk)] de (2.8)
o k=1

Here Ay(D, Ay, Ay are determined by eneans of (1. 3), (2.3), (2. 5), respectively,

3, Solutions for a half-space when the elastic paramseter »
equals the parameter %,8. Let us obtain the solution of the system (1, 1) with
the boundary conditions (2, 2) when p = kpS.

The ratios A5(® / A1) and A1)/ 4, in which the parameter p enters, can be
extracted in an examination of the expressions A,MNA, / Ay (7, & = 1, 2, 3), which
enter into (2, 8), If (1.4) is substituted in these ratios and the indeterminacy is exposed
for the first of them when p tendsto %, S, we obtain

A [ 40 =AW ] A =k,

Therefore, the quantities A,DA, / A, take on the following values;
AN o A8 _ 2kin
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ADA, 20 —1)mn, AD A,  gPng
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AP, __met1)
Ay A
Formulas (1, 5) have the form
ny=ny =i, ng=if (3.2)
Sy =S, =1 %S
i 2 + S3 1 +S

Substituting (3, 1),(3. 2) into (2. 8), we finally obtain
2n

uy = { koW1 (0)d0, u, = \ m¥, (9)do (3.3)
0 0
an

Uy = S - [2aRe ¥ () — (a + 1) Re i'¥ (Q5)] d0

0
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4, Effect of a normal load distributed over the area of an el-
lipse on a half-space,
Example 1, Let D be the domain of the plane z = 0 bounded by an ellipse
with semi-axes a;, b. We consider the normal stresses at the points M (z, y, 0) of the
half-space boundary in the form

kP, 22 2 )~‘f= D
0, = Tar (“5;%‘"? , Me (4.1

g,=0, MED

In order to use (2. 6), a change of variables must be made and the first formula in (4, 1)
must be represented in the form

i’ , Ri=Vabd, ri=a+uy’ (4.2)

R, VR —rp

x —-l/——~x1, Y= l/"“‘yx

Substituting (4, 2) into (2. 6), we find

g, =

d¥+ (§) kaPy d G —Ril
2, Bn@pR,de B+ Rl
Continuing d¥'+ (§,) / dE, analytically in the domain 2z > 0 and integrating with re-
spect to £, we find kP o —Vab
¥ (Q) = — Z__ In — e 4,3
(£2x) 8 Vap  Q+ Vapd (4.3)

The principal values are understood for the logarithms. On the boundary z == ( we cor-
respondingly obtain g+ ey _ __ kyP : ( L E—Vadl —Vap| E—Vabl, 5o )
8t Vb \ (£ + Vgl
1, ¢ D
6= { 0, EED

(4.4)



The effect of a normal load moving along the boundary of an elastic half-space 129

To seek the displacements in an elastic half-space, there remains to substitute (4,3) into
(3.3) in which+{ must be replaced by dA;~1, m by mA,~!, dO by A.~2d0, where

b ~s

We give here only the final formula for the settlement of the half-space boundary in the
domain of load action (4. 1), calculated by using the substitution of (4. 4) into the third

nlg

formula of (3.3)u o) — g (t+101 49
BT T yap () IF@—Da—(=0] A

Example 2, Letusexamine the effect of a uniformly distributed normalload over

the area of a circle in the coordinates (Zy, Y1)
The boundary conditions are

(4.9)

P
gz=3‘tk;—1;, rn<h (4.6
Gz=0’ r1>R1

According to (2, 6) we have
¥ (§) - kzpza

déy 2R
1, [&|<R
S = E
B
V—Elz—'Rfﬂ, ,§1|>Rl

Continuing d¥'+ (&,) / dE, analytically in the domain z > 0, integrating with re-
spact to Q,, and returning to the old 2, y variables by means of (4. 2), we obtain
PQ) =L
O+ Y OR—ap
Substituting (4, 7) into (3, 3), we can obtain the displacement of the half-space points,
We present only the vertical displacement formula

“.n

}ngz ks f R 2 (—1)ka{1+ag-k) id6 (4.8)
us(z, Y, 2) = — 2n3p §'5‘ e; Q+VY G —ad ' .

5, Effect of a normal load moving at a constant velocity along
the boundary of an isotropic half-space, If we make the substitution
z = kyz, in (1. 1),(2. 1) and (3,3) and set

_ . A 1 c2
P = kS, S-—i+T: k—‘iz‘-‘—‘i—;,'i“a“ (i==1,2)

A4-2
a=VIEE YT <

where A, p, p are,respectively, the Lamé elastic constants and the density of the me-
dium, Cy, €y are the propagation velocities of the longitudinal and transverse waves,
and ¢ is the velocity of surface load motion, then (1. 1) and (2, 1) will be the elasticity
theory equations for an isotropic medium in a body coordinate system of the movingload,
while (3, 3) will be their solutions for the half-space z > (. On the basis of this con-
sideration, we obtain some results for an isotropic half-space in moving coordinates from
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Sect. 4,
Replacing z in (4. 1) and (4.5) by k,x, and a; by koa,, we obtain
P 2 2\~
_ z Fod

z = Zﬂdgb (1-“'&";22"'—"'%‘) + MED (501)

o, =0, MED
nje
kyP

Us (22, y) = z - ad+Ni e

3( 2)y) znp‘V-é-z—b- §1+(4'Y""1)¢3—{a———1)f;ﬁ‘ (5.2)

A, __<k32a2 2 +____ m2>lz

As is seen from (5. 2), the integrand depends only on g == k,%}? - m?, hence, the inte-
gral turns out to be constant, Therefore, the moving load (5. 1) yields a constant settle-
ment in the domain of its action,

When the load is distributed uniformly over the domain D of the z = 0 planeboun-~
ded by an ellipse with the semi-axes a,, b, the formulas (4. 6) and (4, 8) take the fol~

iowing form: P
8 %= sar M@Eny,0)ED (5.3)

z =0’ M(x2vy1 O)gb

kzpz ¥ f (__1) a(i +a2—i€)
3(Tay Y, 2) = v 5~ ey ——————
u’3( 20 Y Z) 2“2}1 § ng+ Vﬂg kmb d

6, Effect of a normal concentrated force moving with constant
velocity on the boundary of an elastic half-space, If g,b tends to
zero in the integrand of (5, 3), then the real part is extracted and the irrationality inthe
denominator is gotten rid of simultaneously, then the following result can be obtained:

kP, 28” > (—1)¥a(l + a® )1 L () dO 6.

us (29, y,2) = — Gy : (koPx? -+ 8§,2%) -+ 2kgwaylm + (v* + 2°) m?
0 k==2

(@ -+ 1)2 + daf
L®) = (@ —1){a® + (5 —167) a2 —da — 1]

For z = O this integral can be evaluated by using residues. Let us introduce a new va-
riable ¢ by means of the formulas

¢ 2. -1 dt

1= m=“—“tza , d0 = (6.9)
Then

us (Zay ¥, 2) = —-—-z. Z [res Fy (8) - res F3 (t)] (6.3)

Fy(t) = (—4)" a (1 4 a2¥) f51L (0) 4int

T e — P F O, — D AR 202+ 5, B+ (gt + WP + O — D 2
k=x2,5

(6. 4)

4= (1‘22"1)3‘+2(k224;;-1)t2+(k22 =1 L T = gmad R 2
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The singular points of the function (6,4) are

—rg — 2% 4 2zry

P= (Fats — Ly (6.9)
t——-—l— —rgz-—-Sszaj:ZVTS'-,zrl
TV TGme— P+ (S —1) 2 (6.6)
r=Vkie'+ ¥+ 2

e a,—1
t=+V-1+2B12/F—B B= 6.7

where ap (p = 1,2,3,4) are the roots of the equations
a—1=0, a® 4 (5—16y)a® —5a —1 =0

The residues of the function (6.4) on the z == ( plane with respect to the singular-
ities (6, 7) are zero, It remains to find the residues of the functions (6, 4) with respectto
the simple poles (6, 5) and (6, 6), respectively, which are within the circle |¢|<< 1,
where only the plus sign must be kept under the radicals in (6,5) and(6,6) since | ; | <
1 (i = 1,2,3,4) for 2> 0 . Using the known formula

t !
res /() =2, £ +0, (=20
we obtain of i

TeS Fa(t) = res Fp () = — sl —— (6.8)
=t 1 (1) t=t, 2(¢) 16yre A

= N CL 20} S 6.
mEO= SR O= s s ~o
where A is determined by means of (2, 4).
All the poles on the z = 0 plane coincide, i. e,
t = _ s
koo — iy
Substituting (6, 10) into (6. 2), we have the following relationships
_ ko Sgry? k2 —1)y2

2 __ Ot 4
e r221 f— 7'22 L] a 1—' rz‘“

(6. 10)

(6.11)
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Substituting the doubled results (6, 8) and (6, 9) into the right side of (6. 3) with (6, 11)
taken into account, and performing the necessary manipulations, we finally obtain the
settlement of the boundary surface of the elastic half-space in the moving system of co-

ordinates ky P
_ . (1444 1 6.12

L A ]
At2p’ re ki’ ro?

rn=VkizZ & rn=Vkiz+ o
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It should be noted that the estimate of the vertical displacement given in {4] is closeto
the exact displacement according to (6, 12), when the velocity of the applied force is
less than the velocity of the Rayleigh wave,

If a system of forces P, == g (&3, m;) dQ acts on the elastic half-space, then the set-
tlement in the boundary Q (z,, y) is

Us (&g, Y) = SS K (2 — &3, ¥ — M) g (82, M) dBodmy (6.13)

Here

e ka(14- A4 !
Kz —&,y—m) = S\WBF(I =B (L + A)] rs

oy AR B =M p kR =Bl (v~
ky ko (g — B2+ (y — )2’ ko? (mp — )2 + (y — )2
Let us consider an example. Let a load of the form

P 52_*_1]2 ~1f
9(&21”1)=E“%2(1"_LRZ—L) )

act on the half-space boundary, We calculate the settlement due to this load at the point
7z, = y == 0. To do this, let us go over to a polar coordinate system

Es=pcoso n=psing

Then it follows from (6, 13) R 0
2 2yl o iz
z‘ S (1“ o ) do S AB*(1 4- A)do (6.14)

u3(0,0,0) = T Re " WBI+(1—=B)(1+4)
0 0
ke Vk? cos? ¢ + sin? P kgt

A=% VifcoRp tsintg ' B= 3o rente

Let us go from the polar coordinate  to another by means of the replacement

tgp =kyctg 0
From this relationship we will have ., k202 kod®
cost@=—r, si@=—"—, dp=—
Substituting these formulas and B g\ ~1s R
S (i - ‘R‘f) dp=—5~
into (6, 14), we obtain o |9
(6. 1 0.0.0)— J3Ps A+Nf do
u(00,0=93F }\ TF@wm—Da—@—17 Va

This result agrees with (5, 2) if we set a3 = b = R therein.

REFERENCES

1, Sveklo, V. A, , Elastic vibrations of an anisotropic body. Uchen, Zap, Leningrad
Univ. ,N2 17, 1949,

2. Sveklo, V, A., Boussinesq type problems for the anisotropic half-space. PMM Vol,
28, N2 5, 1964,

3. Sveklo, V., A., The action of a stamp on an elastic anisotropic half~space, PMM
Vol. 34, N2 1, 1970,

4, Eason, G., The stresses produced in a semi~infinite solid by a moving surface
force, Internat, J. Engng. Sci., Vol, 2, N2 6, 1965,

Translated by M, D, F,



